Suelos supresivos y su papel en el manejo de enfermedades
DOI:
https://doi.org/10.56205/ret.2-1.3Palabras clave:
Supresividad, patógenos, antagonistas, factores abióticos, conservacionista, prácticas agronómicasResumen
Los suelos supresivos son una herramienta eficiente en el manejo de enfermedades de origen edáfico, principalmente en agricultura agroecológica donde este tipo de control natural se desarrolla en mayor plenitud. Generalmente, la supresividad está basada en interacciones microbiológicas entre los patógenos y los antagonistas. Dentro de las ventajas de este tipo de control están, reducción en el uso y aplicación de plaguicidas, en la mayoría de patógenos ejerce un buen control, es amigable con otros métodos de manejo de enfermedades. Las interacciones que median la calidad de ser supresivo son dependientes de factores abióticos presentes tales como: niveles de pH, estructura, materia orgánica, contenido de arcilla, temperatura, humedad, responsables en brindar las condiciones óptimas de suprimir a un determinado fitopatógeno. En la siguiente revisión se aborda el concepto de suelos supresivos, tipos de suelos supresores, prácticas culturales y su efecto supresor, efecto de factores abióticos, supresividad a patógenos. Estudios recientes, muestran que la supresividad natural de un suelo puede ser potencializada a través de la implementación de diversas prácticas agronómicas con un enfoque conservacionista tales como mínima labranza, incorporación de enmiendas orgánicas y rotación de cultivos. Por lo tanto, el objetivo de esta revisión es analizar aspectos fundamentales de este tipo de suelos y como estos influyen directa o directamente en el desarrollo de las enfermedades y sanidad en los cultivos.
Descargas
Citas
Abawi, G., & Widmer, T. (2000). Impact of soil health practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl. Soil Ecol. 15, 37-47. DOI:10.1016/S0929-1393(00)00070-6
Alabouvette, C, & Steinberg, C. (2006). The soil as a reservoir for antagonists to plant diseases. In: Eilenberg, J; Hokkanen, H.M.T (eds). An ecological and societal approach to biological control. 2, 123-144. DOI: 10.1007/978-1-4020-4401-4_8
Aviles, M., Borrero, C., & Trillas, M. (2011). Review on compost as an inducer of disease suppression in plants grown in soilless culture. Dyn. Soil Dyn. Plant 5, 1–11. Recuperado de
https://www.researchgate.net/publication/285886741_Review_on_compost_as_an_in ducer_of_disease_suppression_in_plants_grown_in_soilless_culture
Bhattacharyya, R., Chandra, S., Singh, R., Kundu, S., Srivasta, A., & Gupta, H. (2007). Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat-soybean rotation. Soil Tillage Res. 94, 386–96. https://doi.org/10.1016/j.still.2006.08.014
Biederbeck, V., Campbell, C., Rasiah, V., Zentner R., & Wen, G. (1998). Soil quality attributes as influenced by annual legumes used as green manures. Soil Biol. Biochem. 30, 1177–85. https://doi.org/10.1016/S0038-0717(97)00150-8
Bonanomi, G., Antignani, C., Pane, C., & Scala, F. (2007) Suppression of soil borne fungal diseases with organic amendments. J Plant Pathol 89(3), 311–324.
Bonilla, N, Cazorla, F., Martínez-Alonso, M., Hermoso, J., & González-Fernández, J. (2012). Organic amendments and land management affect bacterial community composition, diversity and biomass in avocado crop soils. Plant Soil 357, 215-26. Recuperado de https://link.springer.com/article/10.1007/s11104-012-1155-1
Brady, N., & Weil, R. (2017). The nature and properties of soils. Boston, USA.: Pearson Carrascosa, M., Sanchez-Moreno, S., & Alonso-Prados, L. (2015). Effects of organic and conventional pesticides on plant biomass, nematode diversity and the structure of the soil food web. Nematology, 17, 11-26. DOI:10.1163/15685411-00002849
Chet, I. & Baker, R. (1980). Induction of suppressiveness to Rhizoctonia solani in soil. Phytopathology. 70, 994-998. https://doi.org/10.1094/PHYTO-96-1372
Chang, T.J. (1994). Effects of soil compaction, temperature, and moisture on the development of the Fusarium root rot complex of pea in South Western Ontario. Phytoprotection, 75, 125-131. DOI: https://doi.org/10.7202/706059ar
Chandrashekara, C., Bhatt, J., Kumar, R. & Chandrashekara, K. (2012). Supressive Soils in Plant Disease Management. In Eco-friendly Innovative Approaches in Plant Disease Management. Publisher: International Book Distributors and Publisher, New Delhi, Editors: V.K. Singh, Y. Singh, A. Singh.
Cook, J. & Baker, K. (1983). The Nature and Practice of Biological Control of Plant Pathogens. American Phytopathological Society, St. Paul.
D’Hose, T., Cougnon, M., De Vliegher, A., Vandecasteele, B., & Viaene, N. (2014). The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Appl. Soil Ecol. 75, 189-98. https://doi.org/10.1016/j.apsoil.2013.11.013
Ghorbani, R., Wilcockson, S., Koocheki, A., & Leifert, C. (2008). Soil management for sustainable crop disease control: a review Environ. Chem. Lett., 6, 149-162. Recuperado de https://link.springer.com/article/10.1007/s10311-008-0147-0
Hadar, Y., & Papadopoulou, K. (2012). Suppressive composts: microbial ecology links between abiotic environments and healthy plants. Annu. Rev. Phytopathol. 50:133-53. DOI: 10.1146/annurev-phyto-081211-172914
Janvier, C., Villeneuve, F., Alabouvette, A., Edel-Hermann, V., Mateille, T; Steinberg, C. (2007). Soil health through soil disease suppression: which strategy from descriptors to indicators. Soil Biol. Biochem. 39,1-23. https://doi.org/10.1016/j.soilbio.2006.07.001
Jayaraman, S., Naorem, A., Lal, R., Dalal, R., Sinha, N., Patra, A., & Chaudhari, S. (2021). Disease-Suppressive Soils-Beyond Food Production: a Critical Review. Journal of Soil Science and Plant Nutrition, (21), 1437–1465. Recuperado de https://link.springer.com/article/10.1007/s42729-021-00451-x
Kassam, A.H; Friedrich, T; Shaxson, F; Pretty, J. (2009). The spread of conservation agriculture: justification, sustainability and uptake. Int. J. Agric. Sustain. 7, 292-320. https://doi.org/10.3763/ijas.2009.0477
Kilany, M., Ibrahim, E., Amry, S., Roman, A. & Siddiqi, S. (2015). Microbial suppressiveness of Pythium damping-off diseases. In M.K. Meghvansi, A. Varma (Eds.), Organic Amendments and Soil Suppressiveness in Plant Disease Management, Springer, Berlin.
Larkin, R.P. (2015). Soil Health Paradigms and Implications for Disease Management. Annu. Rev. Phytopathol. 53, 199-221. DOI: 10.1146/annurev-phyto-080614-120357
Liu, S. & Baker, R. (1980). Mechanism of biological control in soil suppressive to
Rhizoctonia soIani. Phytopathology 70, 404-412. 1980. DOI: 10.1094/Phyto-70-404
Löbmann, M., Vetukuri, R., de Zinger, L., Alsanius, B., Grenville-Briggs, L. & Walter, A.J. (2016). The occurrence of pathogen suppressive soils in Sweden in relation to soil biota, soil properties, and farming practices. Applied Soil Ecology, 107, 57-65. https://doi.org/10.1016/j.apsoil.2016.05.011
Magdoff, F. (2001). Concepts, components, and strategies of soil health in agroecosystems.
J. Nematol. 33, 169–72. Recuperado de https://pubmed.ncbi.nlm.nih.gov/19265876/ Mousa, W. & Raizada, M. (2016). Natural Disease Control in Cereal Grains. Reference
Module in Food Science. Elsevier. DOI:10.1016/B978-0-08-100596-5.00206-7
Njira, K. & Nabwami, J. (2013). Soil management practices that improve soil health: elucidating their implications on biological indicators. J. Anim. Plant Sci. 18:2750-60. Recuperado de https://www.m.elewa.org/JAPS/2013/18.2/3.pdf
Page, K., Dang, Y. & Dalal, R. (2013). Impacts of conservation tillage on soil quality, including soil-borne diseases, with a focus on semi-arid grain cropping systems. Aust. Plant Pathol. 42, 363-77. DOI:10.1007/s13313-013-0198-y
Postma, J., Willemsen de Klein, M., & van Elsas, J. (2000). Effect of the Indigenous Microflora on the Development of Root and Crown Rot Caused by Pythium aphanidermatum in Cucumber Grown on Rockwool. Phytopathology.90(2),125-33. DOI: 10.1094/PHYTO.2000.90.2.125.
Saison, C; Degrange, V; Oliver, R; Millard, P; Commeaux, C. (2006). Alteration and resilience of the soil microbial community following compost amendment: effects of compost level and compost-borne microbial community. Environ. Microbiol. 8(2), 47- 57. DOI:10.1111/j.1462-2920.2005.00892.x
Siegel-Hertz, K., Edel-Hermann, V., Chapelle, E., Terrat, S., Raaijmakers, J. M., & Steinberg, C. (2018). Comparative Microbiome Analysis of a Fusarium Wilt Suppressive Soil and a Fusarium Wilt Conducive Soil From the Châteaurenard Region. Frontiers in microbiology, 9, 568. https://doi.org/10.3389/fmicb.2018.00568
Stubbs, T., Kennedy, A., & Schillinger, W. (2004). Soil ecosystem changes during the transition to no-till cropping. J. Crop Improv. 11:105–135. https://doi.org/10.1300/J411v11n01_06
Tamm, L., Thürig, B., Bruns, C., Fuchs, J., Köpke, U., Laustela, M., Leifert, C., Mahlberg, N., Nietlispach, B., Schmidt, C., Weber, F., & Fließbach, A. (2010). Soil type,
management history, and soil amendments influence the development of soil-borne (Rhizoctonia solani, Pythium ultimum) and air-borne (Phytophthora infestans, Hyaloperonospora parasitica) diseases. European Journal of Plant Pathology, 127, 465-481. DOI:10.1007/s10658-010-9612-2 Termorshuizen, A., van Rijn, E., van der Gaag, D., Alabouvette, C., Chen, Y., Lagerlöf, J., Malandrakis, A., Paplomatas, E., Rämert, B., Ryckeboer, J., Steinberg, C., & Zmora- Nahum, S. (2006). Suppressiveness of 18 composts against 7 pathosystems: Variability in pathogen response. Soil Biology and Biochemistry. 38, 2461–2477. https://doi.org/10.1016/j.soilbio.2006.03.002
Weiland, J. E. (2011). Influence of isolation method on recovery of Pythium species from forest nursery soils in Oregon and Washington. Plant Dis. 95:547-553. DOI: 10.1094/PDIS-04-10-0242