Control alternativo de Fusarium oxysporum Schltdl y Pectobacterium carotovorum (Jones) Waldee et al., mediante el uso de aceites esenciales como una alternativa biológica

Autores/as

  • Allison Stefanny Castro Monroy
  • Jovanna Acero Godoy

DOI:

https://doi.org/10.56205/ret.2-1.6

Palabras clave:

Control fitopatógeno; recopilación bibliográfica; plantas aromáticas; extractos de plantas; agentes de biocontrol

Resumen

Los marchitamientos vasculares producidos por Fusarium oxysporum Schltdl y la podredumbre blanda bacteriana por Pectobacterium carotovorum (Jones) Waldee et al., son enfermedades de importancia para diferentes tipos de cultivos como hortalizas, frutas y cereales; ocasionando pérdidas económicas y por sobrevivir en el suelo por largos periodos de tiempo, por lo que su control es difícil. El uso de plaguicidas sintéticos ha sido la tradicional para combatirlos, las consecuencias a largo plazo por su acumulación en el medio han tomado relevancia. El uso de alternativas biológicas extraídas de plantas empieza a destacarse como un método alternativo de control. En esta revisión, se busca hacer una recopilación bibliográfica de la capacidad de los aceites esenciales extraídos de las plantas aromáticas, como tomillo, menta, clavo, entre otros, y sus efectos como posibles agentes de control de estos patógenos, sus capacidades antimicrobianas y antifúngicas, destacando a su vez su forma de acción, los métodos, y las concentraciones que han demostrado efecto sobre los patógenos descritos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aamir, M., & Jittanit, W. (2017). Ohmic heating treatment for Gac aril oil extraction: Effects on extraction efficiency, physical properties and some bioactive compounds. Innovative Food Science & Emerging Technologies, 41, 224–234. https://doi.org/10.1016/j.ifset.2017.03.013 Abdel-Hameed, E. S. S., Al-Thbity, S. M., & Gobouri, A. A. (2020). Chemical composition, antimicrobial and anticancer activities of essential oils extracted from Nankah seeds usingconventional,microwave assisted hydrodistillation and solvent extraction methods.

International Journal of Pharmaceutical Research, 12(sp1), 846–856. https://doi.org/10.31838/ijpr/2020.SP1.133

Acero-Godoy, J., Guzmán-Hernández, T., & Muñoz-Ruíz, C. (2019). Revisión documental de uso de los aceites esenciales obtenidos de Lippia alba (Verbenaceae), como alternativa antibacteriana y antifúngica. Revista Tecnología En Marcha, 32(1), 3–11. https://doi.org/10.18845/tm.v32i1.4114

Aguilar‐Veloz, L., Calderón‐Santoyo, M., Vázquez González, Y., & Ragazzo‐Sánchez, J. (2020). Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Science & Nutrition, 8(6), 2555–2568. https://doi.org/10.1002/fsn3.1437

Al Mamoori, F., & Al Janabi, R. (2018). RECENT ADVANCES IN MICROWAVE-ASSISTED

EXTRACTION (MAE) OF MEDICINAL PLANTS: A REVIEW. International Research Journal Of Pharmacy, 9(6), 22–29. https://doi.org/10.7897/2230-8407.09684

Allenspach, M., Valder, C., & Steuer, C. (2020). Absolute quantification of terpenes in conifer- derived essential oils and their antibacterial activity. Journal of Analytical Science and Technology, 11(1), 12. https://doi.org/10.1186/s40543-020-00212-y

Amaral, D., Pinto, N., Souza, V., Aragao, F., & Santos, M. (2017). Control of Fusarium oxysporum infection in transgenic tobacco carrying oxalate descarboxilase gene. Journal of Applied Biology and Biotechnology, 5(1), 079–083. https://doi.org/10.7324/JABB.2017.50114

Azaiez, S., Ben Slimene, I., Karkouch, I., Essid, R., Jallouli, S., Djebali, N., Elkahoui, S., Limam,F., & Tabbene, O. (2018). Biological control of the soft rot bacterium Pectobacterium carotovorum by Bacillus amyloliquefaciens strain Ar10 producing glycolipid-like compounds. Microbiological Research, 217, 23–33. https://doi.org/10.1016/j.micres.2018.08.013

Aziz, Z., Ahmad, A., Setapar, S. H., Karakucuk, A., Azim, M., Lokhat, D., Rafatullah, M., Ganash, M., Kamal, M., & Ashraf, G. (2018). Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential - A Review. Current Drug Metabolism, 19(13), 1100–1110. https://doi.org/10.2174/1389200219666180723144850

Bendif, H., Lazali, M., Souilah, N., Miara, M., Kazernavičiūtė, R., Baranauskienė, R., Venskutonis, P., & Maggi, F. (2018). Supercritical CO 2 extracts and essential oils from Teucrium polium L. growing in Algeria: chemical composition and antioxidant activity. Journal of Essential Oil Research, 30(6), 488–497. https://doi.org/10.1080/10412905.2018.1493406

Cáceres, M., Hidalgo, W., Stashenko, E., Torres, R., & Ortiz, C. (2020). Essential Oils of Aromatic Plants with Antibacterial, Anti-Biofilm and Anti-Quorum Sensing Activities against Pathogenic Bacteria. Antibiotics, 9(4), 147. https://doi.org/10.3390/antibiotics9040147

Caputo, L., Smeriglio, A., Trombetta, D., Cornara, L., Trevena, G., Valussi, M., Fratianni, F., De Feo, V., & Nazzaro, F. (2020). Chemical Composition and Biological Activities of the Essential Oils of Leptospermum petersonii and Eucalyptus gunnii. Frontiers in Microbiology, 11, 409. https://doi.org/10.3389/fmicb.2020.00409

Che Radzi, N., & Kasim, F. A. (2020). Effect of Microwave Pretreatment on Gaharu Essential Oil Using Hydrodistillation Method. Indonesian Journal of Chemistry, 20(4), 960. https://doi.org/10.22146/ijc.43191

Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial Activity of Some Essential Oils— Present Status and Future Perspectives. Medicines, 4(3), 58.

https://doi.org/10.3390/medicines4030058

Corzo-López, M., & Quiñones-Pantoja, M. L. (2017). Identificación bioquímica, fisiológica y patogénica de aislados bacterianos asociados a la pudrición blanda y pierna negra en papa. Revista de Protección Vegetal, 32(3). http://revistas.censa.edu.cu/index.php/RPV/article/view/928/982

Cubero Agüero, D. (2019). Diversidad de bacterias fitopatógenas, agentes causales de pudriciónblanda en hortalizas de las zonas de Cartago y Alajuela, Costa Rica [Universidad de Costa Rica]. http://repositorio.sibdi.ucr.ac.cr:8080/jspui/bitstream/123456789/11141/1/44697.pdf

Database, E. G. (2021). Fusarium (1FUSAG)[Overview]| EPPO Global Database. https://gd.eppo.int/taxon/1FUSAG

de Lamo, F. J., & Takken, F. L. W. (2020). Biocontrol by Fusarium oxysporum Using Endophyte- Mediated Resistance. Frontiers in Plant Science, 11(37). https://doi.org/10.3389/fpls.2020.00037

Deryabin, D., Galadzhieva, A., Kosyan, D., & Duskaev, G. (2019). Plant-Derived Inhibitors of AHL-Mediated Quorum Sensing in Bacteria: Modes of Action. International Journal of Molecular Sciences, 20(22), 5588. https://doi.org/10.3390/ijms20225588

Desam, N. R., Al-Rajab, A. J., Sharma, M., Mylabathula, M. M., Gowkanapalli, R. R., & Albratty,

M. (2019). Chemical constituents, in vitro antibacterial and antifungal activity of Mentha×Piperita L. (peppermint) essential oils. Journal of King Saud University - Science, 31(4), 528–533. https://doi.org/10.1016/j.jksus.2017.07.013

Edel-Hermann, V., & Lecomte, C. (2019). Current Status of Fusarium oxysporum Formae Speciales and Races. Phytopathology®, 109(4), 512–530. https://doi.org/10.1094/PHYTO- 08-18-0320-RVW

EL-Hefny, M., Ashmawy, N. A., Salem, M. Z. M., & Salem, A. Z. M. (2017). Antibacterial activities of the phytochemicals-characterized extracts of Callistemon viminalis, Eucalyptus camaldulensis and Conyza dioscoridis against the growth of some phytopathogenic bacteria. Microbial Pathogenesis, 113, 348–356. https://doi.org/10.1016/j.micpath.2017.11.004

Elyemni, M., Louaste, B., Nechad, I., Elkamli, T., Bouia, A., Taleb, M., Chaouch, M., & Eloutassi,

N. (2019). Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. TheScientificWorldJournal, 2019, 3659432. https://doi.org/10.1155/2019/3659432

Gao, X., Lv, S., Wu, Y., Li, J., Zhang, W., Meng, W., Wang, C., & Meng, Q. (2017). Volatile components of essential oils extracted from Pu-erh ripe tea by different extraction methods. International Journal of Food Properties, 20(sup1), S240–S253. https://doi.org/10.1080/10942912.2017.1295256

Gavahian, M., & Farahnaky, A. (2018). Ohmic-assisted hydrodistillation technology: A review.

Trends in Food Science & Technology, 72, 153–161.https://doi.org/10.1016/j.tifs.2017.12.014

Gavahian, M., Farhoosh, R., Javidnia, K., Shahidi, F., Golmakani, M.-T., & Farahnaky, A. (2017). Effects of Electrolyte Concentration and Ultrasound Pretreatment on Ohmic-Assisted Hydrodistillation of Essential Oils from Mentha piperita L. International Journal of Food Engineering, 13(10). https://doi.org/10.1515/ijfe-2017-0010

Gavahian, M., Sastry, S., Farhoosh, R., & Farahnaky, A. (2020). Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. Advances in Food and Nutrition Research, 91, 227–273. https://doi.org/10.1016/bs.afnr.2019.09.001

Gerayeli, N., Baghaee-Ravari, S., & Tarighi, S. (2018). Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. European Journal of Plant Pathology, 150(4), 1049–1063. https://doi.org/10.1007/s10658-017-1344-0

Gonçalves, D. C., Tebaldi de Queiroz, V., Costa, A. V., Lima, W. P., Belan, L. L., Moraes, W. B., Pontes Póvoa Iorio, N. L., & Corrêa Póvoa, H. C. (2021). Reduction of Fusarium wilt symptoms in tomato seedlings following seed treatment with Origanum vulgare L. essential oil and carvacrol. Crop Protection, 141, 105487.

https://doi.org/10.1016/j.cropro.2020.105487

González-Fernández, M. J., Manzano-Agugliaro, F., Zapata-Sierra, A., Belarbi, E. H., & Guil- Guerrero, J. L. (2020). Green argan oil extraction from roasted and unroasted seeds by using various polarity solvents allowed by the EU legislation. Journal of Cleaner Production, 276, 123081. https://doi.org/10.1016/j.jclepro.2020.123081

Gordon, T. R. (2017). Fusarium oxysporum and the Fusarium Wilt Syndrome. Annual Review of Phytopathology, 55(1), 23–39. https://doi.org/10.1146/annurev-phyto-080615-095919

Goudjil, M. B., Ladjel, S., Zighmi, S., Hammoya, F., Bensaci, M. B., Mehani, M., & Bencheikh,

S. (2016). Bioactivity of Laurus Nobilis and Mentha Piperita essential oils on some phytopathogenic fungi (in vitro assay). J. Mater. Environ. Sci, 7(12), 4525–4533.

Gutierrez-Pacheco, M. M., Gonzalez-Aguilar, G. A., Martinez-Tellez, M. A., Lizardi-Mendoza, J., Madera-Santana, T. J., Bernal-Mercado, A. T., Vazquez-Armenta, F. J., & Ayala-Zavala,

J. F. (2018). Carvacrol inhibits biofilm formation and production of extracellular polymeric substances of Pectobacterium carotovorum subsp. carotovorum. Food Control, 89, 210–218.https://doi.org/10.1016/j.foodcont.2018.02.007

Haffizi, M., Sulaiman, S., Noraini Jimat, D., & Amid, A. (2020). Review: A Comparison of Conditions for The Extraction of Vegetable and Essential Oils Via Microwave-Assisted Extraction. IOP Conference Series: Materials Science and Engineering, 778(1), 012172. https://doi.org/10.1088/1757-899X/778/1/012172

Hajian-Maleki, H., Baghaee-Ravari, S., & Moghaddam, M. (2021). Herbal essential oils exert a preservative effect against the potato soft rot disease. Scientia Horticulturae, 285, 110192. https://doi.org/10.1016/j.scienta.2021.110192

Hakimi, M. I., Ilham, Z., & Abdul Kohar, R. A. (2019). Enhancement of Agro-Industrial Copra Residue Oil Yield Using Microwave-Assisted Extraction. Waste and Biomass Valorization, 10(9), 2681–2688. https://doi.org/10.1007/s12649-018-0274-1

Haloui, I., & Meniai, A.-H. (2017). Supercritical CO 2 extraction of essential oil from Algerian Argan ( Argania spinosa L.) seeds and yield optimization. International Journal of Hydrogen Energy, 42(17), 12912–12919. https://doi.org/10.1016/j.ijhydene.2016.12.012

Hashemi, S. M. B., Nikmaram, N., Esteghlal, S., Mousavi Khaneghah, A., Niakousari, M., Barba,

F. J., Roohinejad, S., & Koubaa, M. (2017). Efficiency of Ohmic assisted hydrodistillation for the extraction of essential oil from oregano (Origanum vulgare subsp. viride) spices. Innovative Food Science & Emerging Technologies, 41, 172–178. https://doi.org/10.1016/j.ifset.2017.03.003

Hassanin, M., Abd-El-Sayed, M., & Abdallah, M. (2017). Antifungal activity of some essential oil emulsions and nanoemulsions against Fusarium oxysporum pathogen affecting cumin and geranium plants. Scientific Journal of Flowers and Ornamental Plants, 4(3), 245–258. https://doi.org/10.21608/sjfop.2017.11326

Hu, B., Li, Y., Song, J., Li, H., Zhou, Q., Li, C., Zhang, Z., Liu, Y., Liu, A., Zhang, Q., Liu, S., & Luo, Q. (2020). Oil extraction from tiger nut (Cyperus esculentus L.) using the combination of microwave-ultrasonic assisted aqueous enzymatic method - design, optimization and quality evaluation. Journal of Chromatography. A, 1627, 461380. https://doi.org/10.1016/j.chroma.2020.461380

Huang, X.-Q., Lu, X.-H., Sun, M.-H., Guo, R.-J., van Diepeningen, A. D., & Li, S.-D. (2019). Transcriptome analysis of virulence-differentiated Fusarium oxysporum f. sp. cucumerinum isolates during cucumber colonisation reveals pathogenicity profiles. BMC Genomics, 20(1),570. https://doi.org/10.1186/s12864-019-5949-x

Ibrahim, N. A., & Zaini, M. A. A. (2018). Microwave-assisted solvent extraction of castor oil from castor seeds. Chinese Journal of Chemical Engineering, 26(12), 2516–2522. https://doi.org/10.1016/j.cjche.2018.07.009

Joshi, J. R., Khazanov, N., Senderowitz, H., Burdman, S., Lipsky, A., & Yedidia, I. (2016). Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Scientific Reports, 6(1), 38126. https://doi.org/10.1038/srep38126

Kaur, N., & Singh, A. K. (2016). Ohmic Heating: Concept and Applications-A Review. Critical Reviews in Food Science and Nutrition, 56(14), 2338–2351. https://doi.org/10.1080/10408398.2013.835303

Koubaa, M., Mhemdi, H., Barba, F. J., Roohinejad, S., Greiner, R., & Vorobiev, E. (2016). Oilseed treatment by ultrasounds and microwaves to improve oil yield and quality: An overview. Food Research International, 85, 59–66. https://doi.org/10.1016/j.foodres.2016.04.007

Kusuma, H. S., & Mahfud, M. (2017). The extraction of essential oils from patchouli leaves ( Pogostemon cablin Benth) using a microwave air-hydrodistillation method as a new green technique. RSC Advances, 7(3), 1336–1347. https://doi.org/10.1039/C6RA25894H

Liu, Z., Deng, B., Li, S., & Zou, Z. (2018). Optimization of solvent-free microwave assisted extraction of essential oil from Cinnamomum camphora leaves. Industrial Crops and Products, 124, 353–362. https://doi.org/10.1016/j.indcrop.2018.08.016

López-Díaz, C., Rahjoo, V., Sulyok, M., Ghionna, V., Martín-Vicente, A., Capilla, J., Di Pietro, A., & López-Berges, M. S. (2018). Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Molecular Plant Pathology, 19(2), 440–453. https://doi.org/10.1111/mpp.12536

Marina, M. A. S., Eleria, G. del C. H., García, V. H., Velasco, C. R., Cisneros, M. F. R., Larramendi, L. A. R., García, C. O., & Medinilla, E. E. (2021). Salmea scandens (Asteraceae) extracts inhibit the growth of Fusarium oxysporum and Alternaria solani pathogens of tomato. Revista de La Facultad de Ciencias Agrarias UNCuyo. http://revistas.uncuyo.edu.ar/ojs3/index.php/RFCA/article/view/3259

Moghaddam, M., & Mehdizadeh, L. (2016). Essential Oil and Antifungal Therapy. In Recent Trends in Antifungal Agents and Antifungal Therapy (pp. 29–74). Springer India.https://doi.org/10.1007/978-81-322-2782-3_2

Moghaddam, M., & Mehdizadeh, L. (2020). Chemical Composition and Antifungal Activity of Essential Oil of Thymus vulgaris Grown in Iran against Some Plant Pathogenic Fungi. Journal of Essential Oil Bearing Plants, 23(5), 1072–1083. https://doi.org/10.1080/0972060X.2020.1843547

Moghaddam, M., Mehdizadeh, L., Mirzaei Najafgholi, H., & Ghasemi Pirbalouti, A. (2018). Chemical composition, antibacterial and antifungal activities of seed essential oil of Ferulago angulata. International Journal of Food Properties, 21(1), 158–170. https://doi.org/10.1080/10942912.2018.1437626

Mohseni, S., & Rad, A. S. (2018). Determination of Compositions of Thymus Pubescens; the Comparison of Different Solvents towards Extraction. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 1923–1928. https://doi.org/10.1007/s40995- 017-0159-3

Muñoz Castellanos, L., Amaya Olivas, N., Ayala-Soto, J., De La O Contreras, C. M., Zermeño Ortega, M., Sandoval-Salas, F., & Hernández-Ochoa, L. (2020). In Vitro and In Vivo Antifungal Activity of Clove ( Eugenia caryophyllata ) and Pepper ( Piper nigrum L.) Essential Oils and Functional Extracts Against Fusarium oxysporum and Aspergillus niger in Tomato (Solanum lycopersicum L.). International Journal of Microbiology, 2020, 1–8. https://doi.org/10.1155/2020/1702037

Nazzaro, F., Fratianni, F., Coppola, R., & Feo, V. De. (2017). Essential Oils and Antifungal Activity. Pharmaceuticals, 10(4), 86. https://doi.org/10.3390/ph10040086

Nazzaro, F., Fratianni, F., D’Acierno, A., Caputo, L., Feo, V. De, & Coppola, R. (2021). Antibiofilm Properties Exhibited by the Prickly Pear (Opuntia ficus-indica) Seed Oil. Proceedings, 66(1), 29. https://doi.org/10.3390/proceedings2020066029

Niemi, O., Laine, P., Koskinen, P., Pasanen, M., Pennanen, V., Harjunpää, H., Nykyri, J., Holm, L., Paulin, L., Auvinen, P., Palva, E. T., & Pirhonen, M. (2017). Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1. Standards in Genomic Sciences, 12(1), 87. https://doi.org/10.1186/s40793-017-0301-z

Oktavianawati, I. (2020). Essential Oil Extraction of Cananga odorata Flowers using Hydrodistillation and Steam-Water Distillation Processes. IOP Conference Series: Materials Science and Engineering, 833(1), 012032. https://doi.org/10.1088/1757-899X/833/1/012032

Padilla Galvez, N. P. (2017). Capacidad antagónica contra Pectobacterium carotovorum, Pectobacterium atrosepticum, y colonización de sistema radicular de Solanum tuberosum cv. Pukará-INIA, de actinobacterias endófitas de Solanum tuberosum subsp. tuberosum nativa chilena. [Universidad de Concepción]. http://repositorio.udec.cl/bitstream/11594/2865/4/Tesis_Capacidad_Antagonica_contra_Pec tobacterium.pdf

Palyzová, A., Svobodová, K., Sokolová, L., Novák, J., & Novotný, Č. (2019). Metabolic profiling of Fusarium oxysporum f. sp. conglutinans race 2 in dual cultures with biocontrol agents Bacillus amyloliquefaciens, Pseudomonas aeruginosa, and Trichoderma harzianum. Folia Microbiologica, 64(6), 779–787. https://doi.org/10.1007/s12223-019-00690-7

Park, C., Kim, H., Lee, D. W., Kim, J., & Choi, Y. (2020). Identification of antifungal constituents of essential oils extracted from Boesenbergia pulcherrima against Fusarium wilt (Fusarium oxysporum). Applied Biological Chemistry, 63(1), 34. https://doi.org/10.1186/s13765-020- 00518-w

Pavlić, B., Teslić, N., Zengin, G., Đurović, S., Rakić, D., Cvetanović, A., Gunes, A. K., & Zeković,

Z. (2020). Antioxidant and enzyme-inhibitory activity of peppermint extracts and essential oils obtained by conventional and emerging extraction techniques. Food Chemistry, 338, 127724. https://doi.org/10.1016/j.foodchem.2020.127724

Plavsic, D., Skrinjar, M., Psodorov, D., Pezo, L., Milovanovic, I., Psodorov, D., Kojic, P., & Kocic-Tanackov, S. (2020). Chemical structure and antifungal activity of mint essential oil components. Journal of the Serbian Chemical Society, 85(9), 1149–1161. https://doi.org/10.2298/JSC191210017P

Quintanilla, A. J. R. (2020). Identificación y control del agente causal de la pudirición húmeda en alcachofa (Cynara scolymus L.) en chincha baja [Universida Nacional Agracia La Molina]. http://repositorio.lamolina.edu.pe/bitstream/handle/UNALM/4350/requis-quintanilla- angela-juana.pdf?sequence=1&isAllowed=y

Raveau, R., Fontaine, J., & Lounès-Hadj Sahraoui, A. (2020). Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review. Foods, 9(3), 365. https://doi.org/10.3390/foods9030365

Retana, K., Ramírez-Coché, J. A., Castro, O., & Blanco-Meneses, M. (2018). Caracterización morfológica y molecular de Fusarium oxysporum F. SP. Apii asociado a la marchitez del apioen Costa Rica. Agronomía Costarricense, 42(1), 115–126. https://doi.org/10.15517/rac.v42i1.32199

Roohinejad, S., Koubaa, M., Barba, F. J., Leong, S. Y., Khelfa, A., Greiner, R., & Chemat, F. (2017). Extraction Methods of Essential Oils From Herbs and Spices. In Essential Oils in Food Processing (pp. 21–55). Wiley. https://doi.org/10.1002/9781119149392.ch2

Salem, M. Z. M., Elansary, H. O., Ali, H. M., El-Settawy, A. A., Elshikh, M. S., Abdel-Salam, E. M., & Skalicka-Woźniak, K. (2018). Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt. BMC Complementary and Alternative Medicine, 18(1), 23. https://doi.org/10.1186/s12906-018-2085-0

Sarah, M., & Estherina, D. (2020). Essential oil extraction from citronella grass by microwave- assisted hydro-distillation technique: a preliminary study. IOP Conference Series: Materials Science and Engineering, 801(1), 012046. https://doi.org/10.1088/1757-899X/801/1/012046 Seidi Damyeh, M., & Niakousari, M. (2017). Ohmic hydrodistillation, an accelerated energy-saver green process in the extraction of Pulicaria undulata essential oil. Industrial Crops and

Products, 98, 100–107. https://doi.org/10.1016/j.indcrop.2017.01.029

Seidi Damyeh, M., Niakousari, M., Golmakani, M. T., & Saharkhiz, M. J. (2016). Microwave and Ohmic Heating Impact on the In situ Hydrodistillation and Selective Extraction of Satureja macrosiphonia Essential Oil. Journal of Food Processing and Preservation, 40(4), 647–656. https://doi.org/10.1111/jfpp.12644

Sharma, A., Rajendran, S., Srivastava, A., Sharma, S., & Kundu, B. (2017). Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. Journal of Bioscience and Bioengineering, 123(3), 308–313. https://doi.org/10.1016/j.jbiosc.2016.09.011

Stratakos, A. C., & Koidis, A. (2016). Methods for Extracting Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety (pp. 31–38). Elsevier. https://doi.org/10.1016/B978-0- 12-416641-7.00004-3

Yamamoto, Y., Nawate, T., & Mitsudo, S. (2019). Extraction of essential oils from leaves of the Japanese Lindera umbellata Thunb. by using microwave heating distillation method. IOP Conference Series: Materials Science and Engineering, 550(1), 012033. https://doi.org/10.1088/1757-899X/550/1/012033

Yao, Z., Chen, Q., Chen, D., Zhan, L., Zeng, K., Gu, A., Zhou, J., Zhang, Y., Zhu, Y., Gao, W.,Wang, L., Zhang, Y., & Qu, Y. (2019). The susceptibility of sea-island cotton recombinant inbred lines to Fusarium oxysporum f. sp. vasinfectum infection is characterized by altered expression of long noncoding RNAs. Scientific Reports, 9(1), 2894. https://doi.org/10.1038/s41598-019-39051-2

Zeković, Z., Pintać, D., Majkić, T., Vidović, S., Mimica-Dukić, N., Teslić, N., Versari, A., & Pavlić, B. (2017). Utilization of sage by-products as raw material for antioxidants recovery— Ultrasound versus microwave-assisted extraction. Industrial Crops and Products, 99, 49–59. https://doi.org/10.1016/j.indcrop.2017.01.028

Zermane, A., Larkeche, O., Meniai, A.-H., Crampon, C., & Badens, E. (2016). Optimization of Algerian rosemary essential oil extraction yield by supercritical CO2 using response surface methodology. Comptes Rendus Chimie, 19(4), 538–543. https://doi.org/10.1016/j.crci.2015.08.011

Zhong, J., Wang, Y., Yang, R., Liu, X., Yang, Q., & Qin, X. (2018). The application of ultrasound and microwave to increase oil extraction from Moringa oleifera seeds. Industrial Crops and Products, 120, 1–10. https://doi.org/10.1016/j.indcrop.2018.04.028

Publicado

2021-09-10

Cómo citar

Castro Monroy, A. S., & Acero Godoy, J. . (2021). Control alternativo de Fusarium oxysporum Schltdl y Pectobacterium carotovorum (Jones) Waldee et al., mediante el uso de aceites esenciales como una alternativa biológica. Revista Environment & Technology, 2(1), 96-121. https://doi.org/10.56205/ret.2-1.6

Número

Sección

Artículos científicos